VersaScan微區(qū)掃描電化學(xué)工作站是一個(gè)建立在電化學(xué)掃描探針的設(shè)計(jì)基礎(chǔ)上的,進(jìn)行超高測(cè)量分辨率及空間分辨率的非接觸式微區(qū)形貌及電化學(xué)微區(qū)測(cè)試系統(tǒng)。它是提供給電化學(xué)及材料測(cè)試以空間分辨率的一個(gè)測(cè)試平臺(tái)。每個(gè)VersaSCAN都具有高分辨率,長(zhǎng)工作距離的閉環(huán)定位系統(tǒng)并安裝于抗震光學(xué)平臺(tái)上。不同的輔助選件都安裝于定位系統(tǒng)上,輔助選件包括,如電位計(jì),壓電振動(dòng)單元,或者激光傳感器,為不同掃描探針試驗(yàn),定位系統(tǒng)提供不同的功能。VersaSTAT恒電位儀和Signal Recovery 7230鎖相放大器和定位系統(tǒng)整合在一起,由以太網(wǎng)來(lái)控制,保證小信號(hào)的精確測(cè)量。
它是一個(gè)模塊化配置的系統(tǒng),可以實(shí)現(xiàn)如下現(xiàn)今所有微區(qū)掃描探針電化學(xué)技術(shù)以及激光非接觸式微區(qū)形貌測(cè)試:
Scanning Electrochemical Microscopy (SECM) 掃描電化學(xué)顯微鏡
-AC-SECM 無(wú)氧化還原介質(zhì)掃描電化學(xué)顯微鏡
-Stylus-Probe 柔性探針技術(shù)-等距離掃描電化學(xué)顯微鏡
Scanning Vibrating Electrode Technique (SVET) 掃描振動(dòng)電極測(cè)試
Scanning Kelvin Probe (SKP) 掃描開(kāi)爾文探針測(cè)試
Localized Electrochemical Impedance Spectroscopy (LEIS) 微區(qū)電化學(xué)阻抗測(cè)試
Scanning Droplet Cell (SDC) 掃描電解液微滴測(cè)試
Non-Contact Surface Profiling (OSP) 非觸式光學(xué)微區(qū)形貌測(cè)試
Ion Selective Probe (ISP) 表面離子濃度成像系統(tǒng)
以上每項(xiàng)技術(shù)使用不同的測(cè)量探針,且安裝位置與樣品非常接近,但是不接觸到樣品。隨著探針測(cè)試的進(jìn)行,改變探針的空間位置。然后將所記錄的數(shù)據(jù)對(duì)探針位置作圖,針對(duì)不同技術(shù),該圖可以呈現(xiàn)微區(qū)電化學(xué)電流,阻抗,相對(duì)功函或者是表面形貌圖。
VersaSCAN SECM
Scanning ElectroChemical Microscopy 掃描電化學(xué)顯微鏡系統(tǒng)
VersaSCAN SECM 整合了定位系統(tǒng)、兩臺(tái)VersaSTAT恒電位儀和錐形拋光的超微電極探針為一體。SECM多樣化的技術(shù)提供了高空間分辨率,可應(yīng)用于反應(yīng)動(dòng)力學(xué),生物傳感器,催化劑和腐蝕機(jī)理等研究。
兼容恒電位儀: VersaSTAT 3F 和VersaSTAT 3/3F/4。
可進(jìn)行逼近曲線(xiàn)實(shí)驗(yàn)包含“反饋”模式和“發(fā)生-采集”模式兩種成像模式。
結(jié)合了表面形貌測(cè)量技術(shù),如典型的如非接觸式微區(qū)形貌掃描系統(tǒng)OSP,可進(jìn)行樣品表面定距離掃描,
VersaSTATs 配置不同功能的操作軟件,能夠提供強(qiáng)大的成套的非掃描電化學(xué)測(cè)試,取決于其的軟件模式。
VersaSCAN SVET
Scanning Vibrating Electrode Technique 掃描振動(dòng)電極測(cè)量系統(tǒng)
VersaSCAN SVET 整合了定位系統(tǒng)及鎖相放大器技術(shù)(Signal Recovery Lock-in Amplifier), 壓電振動(dòng)模塊, 電位計(jì)和單絲探針。 SVET技術(shù)測(cè)量溶液中的電壓降。電解液中的電壓降是由樣品表面的局部電流所導(dǎo)致的。 SVET提供高分辨率可應(yīng)用于不均勻腐蝕,點(diǎn)蝕,焊接和電耦合等。此外,SVET還有生物方面的應(yīng)用。
鎖相放大器: Signal Recovery 7230
可進(jìn)行線(xiàn)掃描和面掃描
當(dāng)設(shè)定不同的測(cè)量時(shí)間測(cè)量,可進(jìn)行時(shí)間分辨成像
結(jié)合了表面形貌測(cè)量技術(shù),如典型的如非接觸式微區(qū)形貌掃描系統(tǒng)OSP,可進(jìn)行樣品表面定距離掃描,
VersaSCAN LEIS
Localized Electrochemical Impedance System微區(qū)電化學(xué)阻抗測(cè)試系統(tǒng)
VersaSCAN LEIS 整合了 定位系統(tǒng)和VersaSTAT 3F 及差分電壓選項(xiàng), 靜電計(jì),雙探頭探針。 LEIS技術(shù)是通過(guò)測(cè)量施加于樣品的交流電壓和由探針?biāo)鶞y(cè)量的溶液中交流電流的比值,來(lái)計(jì)算局部阻抗,LEIS加入高的空間分辨率,可應(yīng)用于有機(jī)涂層,裸露的金屬腐蝕,和所有和增加的交流技術(shù)相關(guān)的應(yīng)用。
恒電位儀:VersaSTAT 3F及差分輔助選項(xiàng)
可進(jìn)行固定頻率/掃描位置的數(shù)據(jù)成像,和固定位置/掃描頻率的Bode圖或者Nyquist圖。
當(dāng)設(shè)定不同的測(cè)量時(shí)間測(cè)量,可進(jìn)行時(shí)間分辨成像
結(jié)合了表面形貌測(cè)量技術(shù),如典型的如非接觸式微區(qū)形貌掃描系統(tǒng)OSP,可進(jìn)行樣品表面定距離掃描,
VersaSCAN SKP
Scanning Kelvin Probe 掃描開(kāi)爾文探針系統(tǒng)
VersaSCAN SKP整合定位系統(tǒng)及鎖相放大器技術(shù)(Signal Recovery Lock-in Amplifier), 壓電振動(dòng)模塊, 電位計(jì)和鎢絲探針。SKP 技術(shù)測(cè)量探針和樣品表面位置的相對(duì)功函差。這是一個(gè)非破壞的技術(shù),可運(yùn)行于環(huán)境氣氛,潮濕氣氛和無(wú)電解液情況下。相對(duì)功函已經(jīng)被證實(shí)與腐蝕電位 (Ecorr)相關(guān)。SKP 提供的高空間分辨率可應(yīng)用于材料,半導(dǎo)體,金屬腐蝕,甚至這些材料上的涂層。
鎖相放大器: Signal Recovery 7230
可進(jìn)行表面形貌測(cè)量,測(cè)量和設(shè)置探針和樣品間的距離。
使用同一探針,結(jié)合所進(jìn)行的表面形貌測(cè)量,進(jìn)行樣品表面定距離掃描。
VersaSCAN SDC
Scanning Droplet Cell電解液微滴掃描系統(tǒng)
VersaSCAN SDC 整合電位系統(tǒng)和一臺(tái)VersaSTAT, 一個(gè)機(jī)械加工的PTFE 滴液系統(tǒng)頭, 以及一個(gè)蠕動(dòng)泵。SDC 技術(shù)對(duì)電解液微滴進(jìn)行電化學(xué)測(cè)量, 固定電極/電解液界面的面積。SDC提供高空間分辨率可應(yīng)用于動(dòng)力學(xué),腐蝕,流體研究和任何研究樣品表面微小面積而無(wú)需破壞樣品的應(yīng)用或者控制面積在不同電解液中的暴露時(shí)間的應(yīng)用。
恒電位儀: VersaSTAT 3 / 3F /4
可進(jìn)行恒定電化學(xué)參數(shù)/位置掃描的數(shù)據(jù)成圖和固定位置/動(dòng)態(tài)信號(hào)的繪圖,如循環(huán)伏安,塔菲爾, 電化學(xué)交流阻抗等。
可運(yùn)行流動(dòng)或者是靜止的電解液液滴。
VersaSCAN OSP
Non-Contact Optical Surface Profiling
非觸式光學(xué)微區(qū)形貌測(cè)試系統(tǒng)
VersaSCAN OSP整合定位系統(tǒng)和高精度,高速度激光位移傳感器。 OSP 技術(shù)使用漫反射機(jī)理用于樣品的表面形貌。OSP可作為非常靈敏水平的機(jī)制用于表面形貌測(cè)量,,或繪制地形圖與其它掃描探針技術(shù)一起應(yīng)用于樣品表面定距離掃描測(cè)試。
部分論文
1) Title: Electrodeposited silica film interlayer for active corrosion protection
Author: Yan-Hua Liu and Ji-Ming Hu etal., Zhejiang University
Corrosion Science 120 (2017) 61–74
2) Title: Synthesis and characterization of composite nanoparticles of mesoporous silica loaded with
inhibitor for corrosion protection of Cu-Zn alloy
Author: Xin Ma and, Xiangbo Li, Luoyang Ship Material Research Institute (LSMRI)
Corrosion Science 120 (2017) 139–147
3) Title: Passivation and potential fluctuation of Mg alloy AZ31B in alkaline environments
Author: Shengxi Li and Hong Bo Cong etal. The University of Akron, USA
Corrosion Science 112 (2016) 596–610
4) Title: Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on
carbon steel
in simulated concrete pore solutions inthe presence of chloride ions
Author: Y. Cubides, H. Castaned, Texas A&M University, USA
Corrosion Science 109 (2016) 145-161
5) Title: Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating
Author: Peng Xu, Cheng Zhang, Huazhong University of Science and Technology
Electrochimica Acta 206 (2016) 61–69
6) Title: Low-Temperature-Processed 9% Colloidal Quantum Dot Photovoltaic Devices through Interfacial
Management of p–n Heterojunction
Author: Randi Azmi and Sung Yeon Jang etal. Kookim University, Korea
Advanced Energy Material 6(2016)1502146
7) Title: Screening of Novel Anti-Corrosion Coatings By Scanning Electrochemical Microscopy (SECM)
Author: C. Lee and R. Calhoun etal. United States Naval Academy, USA
ECS Transactions, 66 (30) 65-71 (2015)
8) Title: Electrochemically generated sol-gel films as the inhibitor containers of super hydrophobic
surface for active corrosion protection of metals
Author: Xue Fang Zhang and Ji min Hu etal. Zhejiang University
Journal of Materials and Chemistry A, 4(2016) 649-656
9) Title: Application of Localized Electrochemical Impedance Spectroscopy to Lithium-Ion Cathodes
and in situ Monitoring of the Charging Process
Author: Nina Harms and Schr?der, University of Braunschweig, Germany
Energy Technol. 2016, 4, 1- 7
10)Title: An ionic liquid–graphene oxide hybrid nanomaterial: synthesis and anticorrosive applications
Author: Chengbao Liu, Shihui Qiu, Peng Du, Haichao Zhao and Liping Wang
Nanoscale, 2016, 10, 8115–812
11) Title: Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution
Author: Shihui Qiu, and Liping Wang etal. Ningbo Institute of Materials
ACS Appl. Mater. Interfaces 2017, 9, 34294?34304,
12) Inhibitor or promoter: Insights on the corrosion evolution in a graphene protected surface
Authors: Jihyung Lee, Diana Berman,
Carbon 126 (2018) 225-231, University of North Texas, USA
13) Title: High-throughput combinatorial chemical bath deposition: The case of doping Cu (In, Ga) Se film with antimony
Authors: Zongkai Yan, Xiaokun Zhang, and Xiang Yong etc.
Applied Surface Science 427 (2018) 1235–1241, University of Electronic Science and Technology of China
14) Title: Mapping the antioxidant activity of apple peels with soft probe scanning electrochemical microscopy
Authors: Tzu-En Lin and Hubert H. Girault etal. EPFL, Switzerland
Journal of Electroanalytical Chemistry 786 (2017) 120–128
15) Title: Anticorrosive behavior of a zinc-rich epoxy coating containing sulfonated polyaniline in 3.5% NaCl solution
Authors: Feng Yang, and Haichao Zhao, Ningbo Institute of Material
SC Adv., 2018, 8, 13237–13247
16) Title: Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1 M HCl solution
Authors: Mingjun Cui, Liping Wang and Qunji Xue, Ningbo Institute of Material
Applied Surface Science 443 (2018) 145–156
17) Title: Monitoring Tyrosinase Expression in Non-metastatic and Metastatic Melanoma Tissues by Scanning Electrochemical Microscopy
Authors: Tzu-En Lin, Alexandra Bondarenko, and Hubert H. Girault, EPFL, Switzerland
Angew. Chem. Int. Ed. 2016, 55, 3813 –3816
18) Title: Combined scanning electrochemical and fluorescence microscopies using a tetrazine as
a single redox and luminescent (electrofluorochromic) probe
Authors: L. Guerret-Legras, J. F. Audibert, G. V. Dubacheva and F. Miomandre,
Chem. Sci., 2018, 9, 5897-5905
19) Title: Rapid inkjet printing of high catalytic activity Co3O4/N-rGO layers for oxygen reduction reaction
Authors: Baohong Liu and Hubert H. Girault Andreas Lesch, EPFL and Fudan University
Applied Catalysis A, General 563 (2018) 9–17
20) Title: Determining Li+Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy
Authors: Ruiting Yan, Jalal Ghilane, Kia Chai Phuah, Thuan Nguyen Pham Truong, Stefan AHyacinthe Randriamahazaka and Qing Wang, National University of Singapore, Singapore
J. Phys. Chem. Lett. 2018, 9, 491?496